Program Listing for File UtilityMath.hpp

Return to documentation for file (include\Polylidar\UtilityMath.hpp)

#ifndef POLYLIDAR_UTILITY_MATH
#define POLYLIDAR_UTILITY_MATH

#include "Polylidar/Types.hpp"

namespace Polylidar {

namespace Utility {

namespace Math

{

inline double Determinant(const std::array<double, 2>& v1, const std::array<double, 2>& v2)
{
    return v1[0] * v2[1] - v1[1] * v2[0];
}

inline double DotProduct2(const std::array<double, 2>& v1, const std::array<double, 2>& v2)
{
    return v1[0] * v2[0] + v1[1] * v2[1];
}

inline void CrossProduct3(const std::array<double, 3>& u, const std::array<double, 3>& v, double* normal)
{
    // cross product
    normal[0] = u[1] * v[2] - u[2] * v[1];
    normal[1] = u[2] * v[0] - u[0] * v[2];
    normal[2] = u[0] * v[1] - u[1] * v[0];
}

inline void Subtract(const std::array<double, 3>& u, const std::array<double, 3>& v, std::array<double, 3>& out)
{
    out[0] = u[0] - v[0];
    out[1] = u[1] - v[1];
    out[2] = u[2] - v[2];
}

inline void Subtract(const double* u, const double* v, std::array<double, 3>& out)
{
    out[0] = u[0] - v[0];
    out[1] = u[1] - v[1];
    out[2] = u[2] - v[2];
}

inline void Normalize3(double* normal)
{
    auto norm = std::sqrt(normal[0] * normal[0] + normal[1] * normal[1] + normal[2] * normal[2]);
    normal[0] /= norm;
    normal[1] /= norm;
    normal[2] /= norm;
}

inline double L2Norm(double dx, double dy) { return std::sqrt(dx * dx + dy * dy); }

inline double L2Norm3D(double dx, double dy, double dz) { return std::sqrt(dx * dx + dy * dy + dz * dz); }

inline double DotProduct3(const std::array<double, 3>& v1, const std::array<double, 3>& v2)
{
    return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}

inline double DotProduct3(const double* v1, const std::array<double, 3>& v2)
{
    return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}
inline std::array<double, 9> AxisAngleToRotationMatrix(const std::array<double, 3>& axis, const double angle)
{
    std::array<double, 9> rm{{1, 0, 0, 0, 1, 0, 0, 0, 1}};
    // TODO Research what is the proper way to handle this
    if (std::abs(angle) < PL_EPS_RADIAN) return rm;
    auto c = std::cos(angle);
    auto s = std::sin(angle);
    auto t = 1 - c;
    auto& x = axis[0];
    auto& y = axis[1];
    auto& z = axis[2];
    // Creat matrix
    rm[0] = t * x * x + c;
    rm[1] = t * x * y - z * s;
    rm[2] = t * x * z + y * s;

    rm[3] = t * x * y + z * s;
    rm[4] = t * y * y + c;
    rm[5] = t * y * z - x * s;

    rm[6] = t * x * z - y * s;
    rm[7] = t * y * z + x * s;
    rm[8] = t * z * z + c;

    return rm;
}
inline std::tuple<std::array<double, 3>, double> AxisAngleFromVectors(const std::array<double, 3>& v1,
                                                                      const std::array<double, 3>& v2)
{
    std::array<double, 3> axis;
    CrossProduct3(v1, v2, axis.data());
    Normalize3(axis.data());
    double angle = std::acos(DotProduct3(v1, v2));

    return std::make_tuple(axis, angle);
}
// Rotate Vector
inline std::array<double, 3> RotateVector(const double* v1, const std::array<double, 9>& rm)
{
    std::array<double, 3> rv1;
    rv1[0] = rm[0] * v1[0] + rm[1] * v1[1] + rm[2] * v1[2];
    rv1[1] = rm[3] * v1[0] + rm[4] * v1[1] + rm[5] * v1[2];
    rv1[2] = rm[6] * v1[0] + rm[7] * v1[1] + rm[8] * v1[2];

    return rv1;
}

inline double Get360Angle(const std::array<double, 2>& v1, const std::array<double, 2>& v2)
{
    auto dot = DotProduct2(v1, v2);
    auto det = Determinant(v1, v2);
    auto ang = std::atan2(det, dot);
    if (ang < 0)
    {
        ang += M_PI * 2;
    }
    return ang;
}

} // namespace Math
} // namespace Utility
} // namespace Polylidar
#endif